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SUMMARY 

The tumbling motion of aerodynamically stable bodies entering planetary 
atmospheres is analyzed considering that the tumbling, its arrest, and the sub- 
sequent oscillatory motion are governed by the equation for the fifth Painleve' 
transcendent. Results based on the asymptotic behavior of the transcendent are 
applied to study (l) the oscillatory behavior of planetary.probe vehicles in 
relation to aerodynamic heating and loads and (2) the dynamic behavior of the 
Australian tektites on entering the Earth's atmosphere, under the hypothesis 
that their origin was the Moon. 

INTRODUCTION 

When a body in space is separated from a parent body, in most cases the 
separation process will leave the body with a measure of angular momentum. 
The body then will tumble at a constant rate about its center of gravity for 
the remainder of its sojourn in space.  As it enters a planetary atmosphere, 
however, its tumbling rate will begin to be affected by the aerodynamic forces 
and moments that come into play as the dynamic pressure builds up.  If the 
body's shape is such as to provide a measure of aerodynamic stability, the 
increasing aerodynamic moment eventually will bring the tumbling rate to zero. 
Subsequently, the body will undergo an oscillatory motion of possibly large 
but diminishing amplitude.  It is of interest to analyze the sequence both in 
connection with the design of vehicles destined to make uncontrolled entries 
into planetary atmospheres and in connection with the study of the motions of 
extraterrestrial objects that have found their way into the Earth's 
atmosphere. 

The equations governing a tumbling entry are inherently nonlinear and 
hence difficult to treat analytically. The first investigation in this field 
therefore was a numerical study (ref. 1) of a particular vehicle entering a 
specific atmosphere (Mars').  Subsequently, an analytical treatment of the 
problem was reported in reference 2. Results of that study showed that sim- 
plifying approximations could be made, enabling the tumbling motion, its 
arrest, and the subsequent oscillatory motion to be governed by"a single dif- 
ferential equation. This equation was identified as the equation for the 
fifth Painleve transcendent.  Following that study, another analysis was 



carried out (ref. 3) in which the functional relationships existing between 
the motion of the vehicle and the vehicle and planetary properties were 
deduced from the asymptotic behavior of the transcendent. 

The purpose of the present work is to combine the analyses of 
references 2 and 3 in a unified treatment and to apply the results to two dif- 
ferent types of problems.  In the first, the tumbling entry of a probe vehi- 
cle is considered, and it is shown how the results may be used to make rapid 
estimates of the amplitudes of the oscillatory motion in relation to aerody- 
namic heating and loads.  In the second, attention is directed to an aspect of 
the research on the origin of tektites. On the basis of the work of Chapman 
and Larson (ref. k)  the Australian tektites are taken to be of lunar origin 
and the consequent dynamic behavior of the tektites on entering the Earth's 
atmosphere is examined within the context of the present analysis. 

SYMBOLS 

A reference area 

B parameter defined by equation (43) 

C parameter defined by equations (27) 

Cp drag coefficient, —— 

C^ lift coefficient, —— 

., , .       ,   ^o. .  ,  pitching moment 
Cm pitching-moment coefficient, ^  

f dependent variable, tan e 

g acceleration due to gravity 

G parameter defined by equations (27) 

Hs stagnation-point heat transferred per unit area 

I pitching moment of inertia about center of gravity 

Iz moment of inertia about axis of spin 

J0(x) Bessel function of first kind of zero order 

Jx(x) Bessel function of first kind of first order 

I reference length for moment coefficient evaluation 

m body mass .. 



7 

-c 

n integer, denoting number of complete tumbles 

q dynamic pressure, ^ pV2 

r distance from center of planet to body 

s dynamic-pressure parameter, ßVi sin y± 

t t ime 

u horizontal component of flight velocity (sketch (a)) 

v vertical component of flight velocity (sketch (a)) 

V flight velocity (sketch (a)) 

x independent variable (eqs. (10)) 

X,Z axes fixed in space with origin at planet center (sketch (a)) 

y altitude 

Y0(x) Bessel function of second kind of zero order 

Y1(x) Bessel function of second kind of first order 

Z0(x) aJ0(x) + bY0(x) 

a angle of attack in planar motion (sketch (a)) 

ß density parameter (eq. (7)) 

flight-path angle, positive when depressed from local horizontal 
(sketch (a)) 

e      dependent variable (eq. (l6)) 

en     initial value of e which causes body eventually to trim in backward 
attitude 

Aei    increment in initial value of e measured from ec (eq. (19)) 

6     angle of pitch measured from axis fixed in space (sketch (a)) 

0     angle of pitch measured from local horizontal (sketch (a)) 

K initial value of x (eqs. (lO)), / - -^ q_±  -y C: 

A      ablation parameter (eq. (63)) 

p      atmospheric density 

max 



U) 

p 

max 

min 

env 

mh 

atmospheric density at surface of planet 

resultant angle of attack in nonplanar motion (sketch (h)) 

angular displacement of body from fixed space axis, 0-6 (sketch(a)) 

angular velocity of rotating liquid (sketch (e))      ;v 

-( ) at l ; 

- ( ) : 
dx v ' 

initial value 

value of quantity at first peak of oscillatory motion 

maximum value of quantity 

minimum value of quantity 

envelope of oscillatory function 

quantity evaluated at maximum heating 

ANALYSIS 

The analysis leading to a differential equation that can be said to 
characterize the tumbling entry problem was initially presented in reference 2. 
That analysis will be given here again in a slightly amended form to bring out 
its relevance to the study of the motions of extraterrestrial bodies as well 
as of vehicles. As before, in order to reduce the problem to manageable pro- 
portions, it is assumed at the outset that (l) the rotation of the planet and 
of its atmosphere may be neglected; (2) the motion is planar; and (3) the 
acceleration due to gravity is constant.  Further assumptions and approxima- 
tions will be introduced as necessary. 

Equations of Motion 

Under the above assumptions, the equations governing the body's path and 
its motions about that path may be written as 

-mV CpqA + rag sin 7 = 0 

mVy  + CTqA+  m[(v2/r)- g] cos 7  = 0 
J_» 

18 -  qAZCm = 0 

(1) 



The angles a, 7, 0, 0, 0 are  defined 
in sketch (a). 

Simplified angle-of-attack 
equation.- Numerical solutions of equa- 
tions (1) indicate that after the body 
enters the planetary atmosphere, there 
is always an interval over which the 
flight-path angle y    and the flight 
speed V do not change significantly. 
Since this is the interval over which 
any tumbling motion would occur, it is 
an appropriate approximation to take 

,Local 
u / horizontal 

»Planet 
surface       I     Flight path 

xes fixed in space, origin at planet center 

X 

7 

V 

const = 7j_ 

const = V-,- 
(2) 

Sketch (a) 

Then, since $ = u/r, 0 will be essentially zero, so that 

6 » ä (3) 

Next, it will be assumed that aerodynamic damping-moment terms are negligible 
over the range of interest, so that the aerodynamic moment in equations (l) is 
a function of angle of attack only. This, in conjunction with equation (3), 
enables one to consider the last of equations (l) independently of the other 
two. That equation becomes 

CO a y- <l(t)Cm(a) 0 

Aerodynamic restoring-moment coefficient.- As a body tumbles, it sweeps 
through the entire angle-of-attack range. The aerodynamic restoring-moment 
coefficient therefore must be specified over that entire range. Consider 
first a vehicle intended to act as a planetary probe.  It is reasonable to 
anticipate that heating and stability considerations will dictate the choice 
of its shape, hence, that it will be short with a conic profile. Also, in 
order to minimize the amount of heat protection required, it is advisable that 
the vehicle be statically stable in one trim position only. In reference 1 it 
was found that the latter requirement could be fulfilled by the addition of a 
convex afterbody to the original conic forebody. Inspection of the experi- 
mental results collected in reference 1 for a vehicle of this shape reveals ■ 
that the aerodynamic restoring-moment coefficient as a function of angle of 
attack is approximately a sine wave. Accordingly, it will be assumed that for 
the probe vehicle, Cm(a) in equation (h)  may be approximated by 

Cm(o.) = Cmmax sin a (5) 

where C ■mmax is presumed to be available either from experimental data or, 
for example? from Newtonian impact theory. The choice of equation (5) as an 
appropriate form for the aerodynamic restoring-moment coefficient may be 
arrived at from another point of view. With the addition of a convex after- 
body, the shape whose aerodynamic restoring-moment coefficient is reasonably 

5 



well approximated by equation (5) may, with a little imagination, be thought 
of as a modification to a sphere. Now it is easy to see that a sphere with 
its center of gravity displaced from its center of volume has, without 
approximation, precisely equation (5) as the form of its aerodynamic 
restoring-moment coefficient.  In this light, therefore, it is not surprising 
that equation (5) should appear as the appropriate choice. In this light 
also, consider the tektites found in.southeast Australia. As pointed out in 
reference k,  the primary shapes of about 80 percent ..of them, that is, their 
shapes on entering the atmosphere, were undoubtedly spheres or spheroids. 
The aerodynamic restoring-moment coefficient for a perfect sphere is, of 
course, identically zero; but with a small amount of oblateness which may be 
considered as an equivalent displacement of the mass center from the center 
of volume of a perfect sphere, the tektites then would have had aerodynamic 
restoring-moment coefficients of the form of equation (5).  It is this fact 
that places the study of their motions within the framework of the present 
analysis. 

Dynamic-pressure history.- Consistent with the approximations underlying 
equations (2), the altitude history of the body as a function of time is 

y - Y± =  -Vjt (6) 

where 

Ti = ^i si-n 7 l 

The assumption that the planet's atmospheric density varies exponentially 
with altitude 

P = Poe"ßy (7) 

then gives for the dynamic pressure over the range of interest 

q(t) = ^e^i* (8) 

with 

ii -1 PoV»-*1 

Alternatively, if a precise time history of the dynamic pressure is available, 
a more accurate estimate of q. and ßv-j_ may be obtained by fitting the best 
straight line to the initial portion of the dynamic-pressure history plotted 
on semilogarithmic paper. In this regard, it should be clear that equa- 
tion (8) reveals one of the apparently more severe limitations of the present 
analysis, namely, that it can be expected to apply only over the portion of 
the time history in which q(t) increases monotonically. However, it will be 
found that this interval encompasses not only the interval over which tum- 
bling occurs, but also the subsequent range over which the oscillatory motion 
begins and is reduced to small angles. The results of this analysis should 
be suited to act as the connecting link between the body's initial behavior 
and the behavior described by the results of analyses in which the linear 



approximation to the aerodynamic restoring moment has been introduced (ref. 5, 
e.g., which is applicable after the oscillatory motion has been reduced to 

small angles). 

Transformed equation.- Inserting equations (5) and (8) into equation (k) 
gives 

A 7 ßv-ft 
ä " *L T Cl%axe sina = ° (9) 

which will be taken to be the differential equation characterizing the tum- 
bling entry problem. However, a transformation of equation (9) yields a form 
that more quickly shows the nature of the solution. Let 

Al  n 

~qi I °mmax _ 
KS 

2 
(10) 

* = est/2 
K 

Equation (9) takes the form 

a "(x) + 
a M 
X 

+ sin a = 0 

with the initial conditions 

a (K) 

(11) 

a(rc) = a^ 

2 
KS 

CO-i 

(12) 

where, for convenience, a(») is presumed to lie within the range -* < O,(K) < it. 
Note that all the parameters of the problem have been concentrated in the con- 
stant K    and the initial conditions. Equations (ll) and (12) indicate that 
all combinations of body and planetary properties yielding the same value of 
K    and the same initial conditions CC(K), a'(K) will yield identical solutions 
for a as a function of x, though not necessarily as a function of time. 
The independent variable x may be given a physical meaning when it is noted 
that, within the approximations made, it is proportional to the square root of 
the dynamic pressure q.       . . 

The Painleve Transcendents 

The substitution w = sin a/2 in equation (ll) transforms it to 

,w"(x) = L(w)p2 + M(x)p + W(w) (13) 



■where 

p 
dw 

~ dx 

L(w) w 
~  W2    -   1 

M(x) _   1 
X 

N(W) =  w(w2    -   1) 

In reference 6, it will be found that equation (13) is of the form studied by 
the French mathematician Paul Painleve around 1900. It is categorized mathe- 
matically as being a member of the general class of second-order differential 
equations whose solutions have fixed critical points (i.e., no movable branch 
points or essential singularities). This class has been shown to possess 50 
members. Of the 50, all but 6 are integrable in terms of known functions. 
The remaining 6 define new functions, termed "Painleve transcendents." The 
substitution W = (w + l)/(w - 1) casts equation (13) in the form 

W"(x) W2 (£r 
2¥  W - 1 

£1 . 2W pL±J: x     \W - 1 (1*0 

Sketch (b) 

and it will be seen in reference 6 
that equation (ik)   is one of these, 
namely, the fifth (with, in Ince's 
notation, a = ß = 7 = 0, & = -2). 
Unfortunately, aside from this categor- 
ization and a comprehensive examination 
of the asymptotic behavior of the first 
Painleve transcendent (ref. 7)> n0 sub- 
sequent analyses of their properties 
seem to have been published. 

Mechanical Analogy 

Before proceeding, let us first 
consider a simple mechanical analogy of 
equation (9) whose behavior is, in 
effect, intuitively obvious.  By this 
means, the range and character of 
motion governed by the equation can be 
revealed relatively simply. 

Consider a small bead constrained 
to slide, without friction, on a circu- 
lar path in a vertical plane. Let a 
time-dependent force F(t) be exerted 
downward on the bead. This situation 
is illustrated in sketch (b). Equating 



the torque about the center of the circle to the bead's rate of change of 
angular momentum gives 

1 
9 + 7 

F(t) 
m 

sin cp = 0 (15) 

Thus, if g + [F(t)/m] is caused to vary in proportion to the body's dynamic 
pressure history, the motion cp(t) governed by equation (15) will be analogous 
to that of the body with cp playing the role of a. 

For convenience, let cp = 0 (the bottom of the circle) at t = 0. Wow 
give the bead an initial velocity sufficient to carry it several times around 
the circle. Each time the bead traverses the circle, cp will be counted as 
having increased by 2rt. This, of course, corresponds to one complete tumble 
of the body. It is clear that, because F(t) increases continually, more and 
more of the total energy will be in the form of potential energy each time the 
bead nears the top of the circle. Eventually, therefore, the bead will not 
have sufficient kinetic energy to carry it over the top. At this point, it 
will reverse direction, slide down past the low point, and proceed to oscil- 
late about the low point. Again, because the amplitude of the restoring^ 
torque grows indefinitely with time, the amplitude of oscillation will dimin- 
ish and the frequency will increase with time. The final value of cp will be 
a multiple of 2rt . This behavior is illustrated as curve A in sketch (c) for 
a case where the bead has tumbled twice. 
Note in the sketch that once tumbling is 
arrested, the bead's amplitude of oscil- 
lation about 2nxt  cannot exceed rt.1 

For a range of successively smaller ini- 
tial velocities, the behavior of cp(t) 
will be qualitatively similar to that 
just described, the tumbling in each 
case being arrested when cp  is between 
(2n - l)rt and (2n + l)rt and the subse- 
quent oscillation being about 2mr. 
Eventually, however, as the initial 
velocity is successively reduced, a 
specific initial velocity will be 
reached for which the kinetic energy 
near the top of the circle (i.e., cp = (2n - l)jt) is just sufficient to enable 
the bead to reach the top and come to rest there. As the top is a position 
of unstable equilibrium, the bead cannot oscillate about that position, but 
must approach it uniformly from below. This is shown as curve B on 
sketch (c). For a slightly smaller initial velocity, the bead will not  

ilt will be observed that this description of the arrest of tumbling does 
not entail the presence of aerodynamic damping. This contradicts a result 
presented in reference 8, in which the cause of the arrest of tumbling is 
attributed to a dissipation of rotational energy through aerodynamic damping. 
The author of reference 8 is led to this conclusion by the erroneous assump- 
tion that the net change of potential energy over one complete revolution is 
small enough to be neglected. 

Sketch (c) 



surmount the top and, hence, must oscillate about the next smaller multiple 
of 2n: (i.e., (2n - 2)jt). This is shown as curve C on sketch (c) . Again, 
there "will be a range of successively smaller initial velocities for which 
the bead will oscillate about (2n - 2);t, eventually terminating with an ini- 
tial velocity that brings the bead to rest, without oscillating, at (2n - 3)tf 
(curve D). 

To summarize this discussion as it applies now to the body, one observes 
that for any initial angle of attack <x^ there will be a range of values of 
initial angular velocity &j_ that will cause a eventually to oscillate 
about a given value of 2nrt. This range of initial angular velocities is 
bounded by the two specific angular velocities which, for the same ai, cause 
a to come to rest without oscillating at (2n + l)jt and (2n - l)it. The latter 
cases, where the body comes to rest in a position of unstable equilibrium, are 
somewhat unrealistic in practice. They can be important in analysis, however, 
as they serve to define the multiple of 2« about which a eventually 
oscillates. 

Properties of the Transcendent 

Although it is possible to obtain approximate analytical representations 
of the motions just described (cf. ref. 2), these solutions cannot be extended 
far enough to cover all cases of interest. In particular, they begin to fail 
as they approach the condition for which the body tends to dwell near a posi- 
tion of unstable equilibrium.  On the other hand, it is not useful merely to 
present a catalog of numerical solutions for the Painleve transcendent, as a 
separate solution would be necessary for each pair of initial conditions and 
this would require a prohibitive number of solutions. Alternatively, analysis 
can point the way to obtain a limited number of generalized numerical results 
from which most of the properties of interest can be derived. This will be ' 
the objective of the present section. 

Definition of parameters.- Consider equation (ll), and to bring in 
evidence that for the oscillatory solution, a -> 2nrt as x -» °°, let 

' a = 2nn: - 2e . (l6) 

where n is an integer, denoting the number of tumbles completed over the 
range of tumbling. As indicated in the. preceding discussion, if its value is 
required, it must be determined from the nonoscillatory solution (cf. ref. 2). 
In the present study, however, it will not be necessary to know the cumulative 
value of a, but only its value relative to the final equilibrium position 
2njt. Hence, n need not be determined. It is convenient to retain the symbol 
a for designating angle of attack, but in doing so, henceforth we shall 
actually mean a - 2nn, or interchangeably, -2e. The equation of motion in 
terms of e becomes 

e" + — + sin e cos e = 0 '   (17) 
■X. 
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Locus of first peaks, x = x(«p)s 

-T7/2 

TT/2 

where now e -*■ 0 as x -> °°.  Consider a 
sequence of solutions of equation (17) 
in which the initial velocity e* (K)  is 
held constant and e(n) is allowed to 
vary. A typical sequence is shown on 
sketch (d). Observe that for the given 
£'(«)> there is a unique value of e(n) 
within an interval of it that will 
bring the motion to rest without oscil- 
lating at e = -rt/2 (corresponding in 
a to an odd multiple of it). This 
motion is shown as curve A in sketch (d)^ 
and its initial value will be called the 
critical angle,, ec(

K)' I-t shou13- be 

clear that the curve labelled B is iden- 
tical to curve A and describes the same 
event, as do any two curves in e    whose 
initial velocities £'(K) are the same 
and whose initial values are separated 
by a multiple of %. As is evident .from sketch (a) 
the sketch, all possible solutions for a. 
given €'(K) are included within and 
bounded by the nonoscillatory solutions shown as curves A and B.< Now in.most 
applications, the questions of greatest interest will be: When does tumbling 
effectively stop and what is the nature of the subsequent oscillation? Both 
questions can be answered by defining conditions at the first peak of the 
oscillatory motion.2 As shown on sketch (d), a locus of such points can be 
drawn which then intersects the first and largest peak of every one of the 
oscillatory motions. For any e(ft) between ec and ec + it, let ep be the. 
value of e. at the first peak and x(ep) be the value of x at the first 
peak. Functionally, ep and x(ep) are dependent on the initial conditions; 

ep = ev(e(n),Ke*(K),K) 

€r+TT 

that is; 

x(ep) = x(e(K),K6'(R),R) 
(18) 

For entry from without the atmosphere, for which K  -> 0, it can be shown that 
the functional relationships (18) no longer depend on K. Further, it will be 
found convenient to show the dependence on e(n) as a dependence on an incre- 
ment in. e(rc), the difference between e(n)  and the critical angle ,ec- Thus, 
let •    '' .;■■■'; : '■•■. 

A£i = e(fe)   - ec .:._; .   (19) 

For entry from without the atmosphere, then ■■.'.■:.':.. 

.   ,'    .',;'     . ep = e'p(äi/s,Aei) ...      , ''.' ., (20y 

.■■■■   x(ep)  = x(äi/s,Aei) ' 

^To be precise, tumbling actually stops earlier than at the first peak, - 
namely, at the value of x for which e,2(x) = cos2 e (cf. ref. 2). However, 
the difference between the two coordinates generally is not great and the 
location of the first peak is a physically more tangible parameter to charac- 
terize the end of tumbling. 

11 



since 
KG'(K) = -oti/s 

Note that these functional relationships are independent of all body param- 
eters. They indicate the existence of single solutions applicable to all 
cases. Thus, it is practical to evaluate them numerically once and for all. 
This has been done and the results are presented on figures 1 and 2.  In an 
entry from without the atmosphere, all values of Aei are equally probable; 
however, the values of primary concern are those which lead to the largest 
first peaks of oscillation, for the subsequent oscillation amplitudes will 

Figure 1.- Values of e at the first peak of oscillation as a function of initial angular 
velocity. 
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Figure 2.- Values 
of x at the first peak of oscillation as a function of initial angular 

velocity. 

then be largest through the high heating and loading portions of the trajec- 
tory. Reference to sketch (d) will show that the largest first peaks occur 
when Aei is near zero and again near or, and values of ep and x(ep) for 
these ranges of Aei have been particularly stressed in figures 1 and 2. It 
will be seen also on sketch (d) that there exist two solutions of special sig- 
nificance. One of these gives the minimum possible value of x for which the 
first peak can occur.  It is denoted by xPmln and e(xPmln) on figures 1 and 
2  The second special solution leads to the smallest possible value of e at 
the first peak. It is denoted by ePmin and x(ePmln) on figures 1 and 2. The 
latter solution is particularly important since, as will be shown, it may be 
used to establish a lower bound for the envelope of oscillatory motion. That 
this minimum angle of attack at the first peak of oscillatory motion must be 
different from zero will be evident when it is recalled that all of the rota- 
tional energy of the body must show up as potential energy due to angle of 
attack when the body pitch rate is zero. 

Asymptotic solution for zero initial pitch rate.- With the magnitude and 
coordinate of the first peak of oscillatory motion defined, it is now possible 
to treat the oscillatory motion relatively simply. In effect, the problem has 
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been reduced to the case of a nontumbling body which begins its oscillatory 
motion at x(ep), a particular value of x, with the initial conditions 
ei = ep> ei' = 0.  Let f = tan e. Equation (17) becomes 

Off t 2      f! 
f"-     P + — + f = 0 

1 + f2   x 
(21) 

Noting the resemblance of equation (21) to the equation for the Bessel func- 
tion of zero order, one may cast equation (21) in the form of an integral 
equation involving the Bessel function by means of the method of variation of 
parameters. Thus, 

f = Z0(x) + I J    |2(i)[J0(x)Y0(5) - Y0(x)j0(g)]d£ (22) 

with 

Z(x) = 
2f(x)f,2(x) 

-\ 

1 + f2(x) 

Z0(x) = äJ0(x) + bY0(x) 

a - a - 75- gz(i)Y0(|)d| 

x(ep) 

b = b + I 
£Ui)Jn(£)ai 

x(eP) 

a = - I x(ep)Y1(x(ep)) tan ep 

b = I x(ep)J1(x(ep)) tan ep 

(23) 

J 

The integral in equation (22) can be shown to diminish faster than x~1/2 as 
x -» 00, and hence the asymptotic behavior of f (x) is f (x) ~ Z0(x) .  Values 
of x in the portion of the trajectory of primary interest, where aerody- 
namic loads and heating become significant, are sufficiently large that the 
asymptotic behavior of Z0(x) may be used. Then, for large x 

f(x) a2 + b2) sin ( x (2h) 

where 

u = tan -i a 

Hi- 



The envelope of oscillation is given by 

(tan e)env = j= Jf{ a + b2) (25) 

Since for small values of 
equation (25) as follows: 

ep, a b -* b, it is convenient to normalize 

Let 

where 

and 

where 

G 

(tan e) snv 1 F + b2 

J§<^ b2) 
\j x  * /a2 + b2 

'ä2 + b2 

a2 + b2 

(26) 

^ 

G = G(ep,x(ep) ) 

> 
(27) 

C = x(ep)J|[Y1
2(x(ep)) + J1

2(x(ep))] 

C = C(x(ep)) 

Then equation (26) takes the simple form 

\^x(tan e)env. 

C tan £p 

J 

= G (28) 

Equation (28) is the correct asymptotic expression for the envelope curve of 
tan £ in terms of the parameter G. Unfortunately, G cannot be evaluated 
analytically but since it is dependent upon only two parameters, ep and x(ep), 
it is practical to evaluate it numerically for a wide enough range to suffice 
for all conditions of interest. This has been done and the results are pre- 
sented in figure 3-3 For convenience, the parameter C has also been evalu- 
ated and the results are presented in figure k.    With G determined, equation 
(28) is a very general expression for the body's envelope of oscillatory 
motion. Observe that it is independent of all body parameters.  It is spe- 
cialized to a particular case by relating x to some physically significant 
parameter such as altitude, fraction of maximum dynamic pressure, or fraction 
of maximum aerodynamic heating. Examples of these relationships will be given 
in the next section. 

3The origins of the curves for x(ep) = 10 and x(ep) = 20 have been 
displaced for clarity. 
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Figure 3-- Variation of the parameter G with ep for several values of x(sp). 

Finally, consider the case x(ep) -> 0, which corresponds to the 
nontumbling entry of a body from without the atmosphere. Inspection of the 
results of figure 3 shows G to be independent of x(ep) for values of x(ep) 
approaching zero. Further, C (eqs. (27)) is also independent of x(ep) for 
small x(sp), as may be shown when the Bessel functions in C are replaced 
with their initial behavior approximations. Thus, 

C /- for '(%) 0 (29) 

With these results, equation (28) may be further simplified for the case of a 
nontumbling entry from without the atmosphere. The envelope of oscillatory 
motion is given by 
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(tan e) env -P1 
G(e-n) tan eT (30) 

It is of particular interest to note the 
general nature of the solution offered 
in equation (30). The solution written 
as a function of the coordinate x is 
independent of all body parameters, 
planetary properties, and initial condi- 
tions except initial angle of attack. 

Useful Relations 

Within the assumptions of this 
analysis (V = V±,y = j±),  the dynamic 
pressure varies as 

q/q. = eßVi Bin 7lt      (3D 

Hence, from equations (10) 

Figure k.-  Variation of the parameter C 
with x(ep). 

X 

K 
(32) 

so that the envelope expression (eq. (28)) may be rewritten 

(tan e) env 
tan e 

CGK 
P 

-1/2 (i. 
^1 

■1/4 

(33) 

It will be noted that this form is in agreement with the asymptotic form (for 
negligible aerodynamic damping) previously derived in reference 5 for the 
case of small initial a. The latter derivation is not dependent on assump- 
tions concerning the variations of either flight-path angle or flight veloc- 
ity. Hence, equation (33) can be extended, and the restrictions underlying 
its development circumvented, by the simple expedient of using a more precise 
expression for q/q.  in place of equation (31)- The results of reference 9 
are particularly useful in this regard as they permit one to write this ratio 
in a variety of forms involving physically significant parameters. 

Envelope of oscillation in terms of altitude.- From reference 9 

V = V±e 
-(CpiP0A/2ßm sin 7±)e -ßy 

so that 

A. = 
P°Vl    e-ßye-(CDPoA/ßm sin 7i)e 

1i        2(li 

-ßy 

(3*0 

(35) 
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Substituting equation (35) in (33) gives 

(tan e) env 
tan e 

= CG 
P 

ß2 sin2 7jl ßy (CDP0A/ßm sin y±)e -ßy 
-,1/4 

2P0A2Cm 
e e 

max 
(36) 

where 

ep = ep(cxi/s,Aei) ,   C = C(x(ep)) ,   G = G(ep,x(ep)) 

It should be kept in mind in using equation (36) that x has been assumed to 
be sufficiently large that the solution is indeed described by its asymptotic 
form. Thus, there is implied an upper bound on y which will exclude values 
of y large enough to cause (tan e)env/tan ep to exceed or approach unity. 

Envelope of oscillation in terms of dynamic pressure.- From reference 9 
the maximum dynamic pressure is 

%aas ■x      2e \J3  sin y^J XG-jß. 
m 

(37) 

Writing    q/q^    as 

JL 
1i 

q     Q-max 

^max    ^i 
(38) 

and substituting equations  (37)  and (38)   in (33)  gives 

(tan s) env 
tan e = CG 

P 

1 
2 VAZG 

; )(ße sin y±) 
%iax/ 

'CiA <W 
m 

1/4 

(39) 

Envelope of oscillation in terms of aerodynamic heating.- The results of 
reference 9 provide the following expression for fraction of maximum 
stagnation-point heating rate 

H, 

(HB) 

-fifa/z)   (i/2)(i-e-ß Ay) 
= e      e 

s'max 
(^0) 

where 

&  = y - yi 

yi = altitude for maximum heating rate 

3CDP0A 
yi - ß log ^ßm sin 7i 

(hi) 
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Equation (kO)  cannot be inverted to solve for Ay, so that a graphical solu- 
tion is necessary. This is presented in reference 9. Substituting equa- 
tions (k-1)  in (36) gives 

(tan e)env = ^ 
tan 6p 

1/4 

(^2) 

■where   ß Ay   can be related to    Hs/(Hs)max    through the graphical solution 
provided in reference S. 

APPLICATIONS 

As illustration of their use, the preceding results will be applied in 
two different connections; first, as an aid in the design of vehicles intended 
for use as planetary probes and, second, as an adjunct to the research into 
the origin of tektites. As a preliminary to both applications, however, a 
method will be presented that will be of general use in placing reasonable 
bounds on the oscillation envelopes of initially tumbling bodies. 

Bounds on Oscillation Envelopes 

A body making an uncontrolled entry into a planetary atmosphere 
generally will be tumbling at an essentially constant rate prior to entering 
the sensible atmosphere. Because of the tumbling motion, generally it will 
not be possible to specify the angle of attack at the precise moment aerody- 
namic effects begin to influence the motion. Therefore, an uncertainty in the 
angle-of-attack history within the atmosphere will necessarily prevail. How- 
ever, it is possible to relate the parameters describing the body and its 
trajectory to the probability that the body will eventually undergo oscilla- 
tions bounded by specified envelopes. Thus, the uncertainty in the angle-of- 
attack envelope history within a given atmosphere is bounded below by a 
minimum possible for a given initial tumbling rate and above by a maximum for 
which the probability of exceeding the maximum can be specified. 

Consider first the lower bound. The results giving envelopes of 
oscillation in terms of aerodynamic heating and dynamic pressure may be put 
into a particularly convenient form. First, let 

B - (¥> ■* r,/™*-) <■*> m J^ 'I'VAZCm, umax- 

Then, with the use of equations (39) and (k2),  the values of the minimum pos- 
sible envelopes evaluated at, respectively, maximum dynamic pressure and 
maximum heating may be given the form 
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(tan e) min env 
max q 

1/4 

= CG[ - |- B J  tan ep 

(tan £)min env 
-taax heat 

mm 

3 Ql/3- 
1/4 

= CG( - £ e1/3B   tan ev d /      -^min 

M 

Note that, aside from the parameter B, equations (kk)  contain terms involving 
only the initial tumbling-rate parameter 2cLj_/s. Thus, if values of B are 
chosen for a wide enough range to cover all cases of interest, these relations 
may be evaluated once and for all. The results are presented on figure 5« 
Now, it is further noted that the following relations hold 

(tan e) mm env 

(tan e.)m1 mm env 

Lmax 

<1 

1/4 

-max q 

(tan ejjn^n env 

(tan e) mm env 
-max heat 

ß4^(V3)eßZ^ e  e 
,1/3 

1/4 
(h5) 

and that these expressions are independent of all parameters relating to the 
body. These functions are presented graphically in figure 6. The minimum 
possible envelope of oscillation in terms of fraction of maximum dynamic 
pressure or fraction of maximum heating can be computed from the graphs of 
figures 5 and 6. A relationship between the minimum envelopes and envelopes 
having a specified probability of being exceeded will now be established. 

A study of sketch (d), for a given initial tumbling rate, suggests the 
possibility that the asymptotic behavior of the envelopes of oscillatory 
motion for two different initial angles of attack might be identical. 
Inspection of equation (28) reveals that this will indeed be the case if the 
term CG tan ep is the same for two different initial angles of attack. Now 
it is noted that this product is a function only of Ae±    for a given tum- 
bling rate and that for each value it takes on for Aei near zero there is a 
corresponding Aei near %     for which it has the same value. Values of Aei 
near zero correspond physically to the body being oriented in an attitude 
slightly less inclined to the stream than the critical attitude and values of 
Aei near rt correspond to the body being at a slightly greater inclination 
than for the critical; an appropriate interpretation of these values gives 
the probability of exceeding a particular envelope. Thus, suppose that a 
particular value of CG tan ep is chosen and that this same value results 
from both Aei = 1-5° and Aei = 179•5°• For values of Aei between 0° and 
1.5°, or between 179.5° and l80°, the subsequent envelopes of oscillation 
will exceed those for all Aei between 1.5° and 179.50. Then there is a 
2.0° range of Aei out of a possible l80° range, or a probability of 1/90 
that the envelope for the chosen value of CG tan ep will be exceeded. 
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Figure 5-- Minimum possible envelope values of tan e at maxinmm heating and maximum dynamic 
pressure as functions of initial angular velocity for several values of the parameter B. 
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Figure 6.- Relationship between minimum possible envelope values of tan e and fraction 
of maximum heating and maximum dynamic pressure. 

The relationship between an envelope of oscillation having a specified 
probability of being exceeded and the minimum possible envelope is independ- 
ent of the characteristics of the body. One observes this by forming the 
following ratio, using equation (28) 

(tan e) env 

(tan e) mm env 

C(ep)G(ep,x(ep)) tan ep 

C e-r, . )G 6p . ,x ep , , tan e-r, mm / /     P. mm 

(k6) 

and noting that the right side is dependent only upon the tumbling rate 
parameter 2cxi/s. This relationship has been evaluated for several probabili- 
ties and the results are presented on figure 7.  Application of the results of 
figures 5,   6, and 7 to make estimates of the upper and lower bounds to the 
envelope of oscillation is illustrated in the following section. 
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Figure 7-- Relationship between envelope values of tan e having a specified probability of 
being exceeded and values of tan e for the minimum possible envelope as a function of 

initial angular velocity. 

Motions of Planetary Probe Vehicles 

To illustrate the use of the results and to assess their accuracy, a 
sample calculation will be made and compared with results in which no approxi- 
mations were made either to the equations of motion or to the aerodynamic 
forces and moments. The comparison will be made with the results of refer- 
ence 1 for a vehicle making a tumbling entry into the martian atmosphere. 

Calculation of parameters, 
following physical properties: 

- The vehicle studied in reference 1 had the 

A = 8.296 ft2 

I = 5.6 lb-ft-sec2 

I  =  3-25 ft 

m = 6.685 lb-sec2/ft 

CD = 0.650 

c™, = -0.162 
'"max 

where Cmmax was evaluated so that the area under a half-cycle of the approx- 
imating sine function curve equalled that under the actual pitching-moment 
variation. The martian atmosphere and the entry conditions were given as 
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ß  = 2.15xl0"5/ft 

Vi  = 

7± = 

d-;    = 

21,0^2 ft/sec 

41.5° 
0.209l| radian/sec 

leading to 

2dj_/s 

80 

60 

Decreasing altitude 

! ! !— 

Present analysis 
Exact numerical solution 

./Envelope whose probability of being 
'/' exceeded is 2.75/360 

Hs AHs'max 

Figure 8.- Envelopes of oscillatory motion 
as a function of fraction of maximum heat- 
ing rate for a Mars entry; initial angular 
velocity = 12°/sec. 

s = 0.30/sec 

1.396 

B = -1.^32x10-5 

Determination of angle-of-attack 
envelopes.- The minimum possible enve- 
lope of oscillatory motion in terms of 
aerodynamic heating rate, subsequent to 
the arrest of tumbling, is jietermined 
in the following way: Enter figure 5 
with the given values of 2a,i/s and B 
to obtain [(tan e)min envlmax heat • 
Use this value in conjunction with fig- 
ure 6 to construct a graph of (a)min env 
versus Hs/HSmax. Results of this cal- 
culation are presented on figure 8 and 
the exact results are shown for compar- 
ison.  One obtains the envelope having 
a probability of 2.75/360 of being 
exceeded by entering figure 7 with the 
given values of 2di/s and probability; 
this gives the ratio of the envelope 

values of the upper and lower bounds of tan e. The upper bound envelope is 
constructed from the product of this ratio and the already obtained minimum 
envelope. Results of this calculation are also shown on figure 8 and compared 
with the exact results. • It is noted that the agreement between the exact 
result and that of the present theory is within 10 percent throughout. 

Motions of Tektites 

Origin of tektites.- From the exhaustive studies of the nature of the 
curious glass objects known as tektites (see ref. k  for an extensive bibliog- 
raphy), it has been known for a long time that the tektites experienced two 
separate periods of intense heating.  During the first, heating was suffi- 
ciently intense to melt the objects completely, whereas in the second, heating 
was sufficient only to melt the thin surface layers of otherwise solid objects. 
After the extensive investigations of Chapman and his colleagues (refs. k  and 
10), in which the ring-wave markings and coiled flanges that are such distinc- 
tive features of the Australian tektites were reproduced with fidelity in 
wind-tunnel experiments, there can be little doubt that the second period of 
melting occurred as the result of a hypervelocity passage through the Earth's 
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atmosphere. Further, from a minute study of the striae lying beneath the 
tektites' surfaces, combined with the observed final tektite geometry, the 
authors of references h  and 10 have been able to deduce the probable speed and 
flight-path angle of these objects as they entered the atmosphere, and they 
have concluded that the entry conditions deduced were compatible with those 
for objects whose origin was the Moon. If this conclusion is accepted^as cor- 
rect, the following sequence of events may be hypothesized: The Moon is 
struck by a meteor, the lunar surface at the point of impact is vaporized and 
streams of molten lunar surface material are ejected outward from the crater 
at very great velocity, at such great velocity indeed that the molten material 
has sufficient kinetic energy to escape the gravitational field of the Moon. 
Subsequently, some of the lunar material traverses a path in space that brings 
it within a corridor permitting capture by the Earth's gravitational field. 
Sometime after its ejection from the Moon, the stream of molten material 
breaks into segments which tend to contract into characteristic shapes by the 
action of surface tension, congeal, and solidify as they lose their heat by 
radiation. The tektites then enter the Earth's atmosphere as solid bodies, 
and, during their passage through the atmosphere, acquire by ablative melting 
the characteristic ring waves and flanges that so distinguish them when they 
are found on the Earth's surface. 

Now, if this sequence did actually originate with a collision, it seems 
probable that at least a portion of the lunar material should have acquired a 
certain amount of angular momentum. The molten objects then would have found 
themselves turning while in space and would have sought to assume the stable 
figures consistent with their turning rates. They would have been turning, 
or tumbling, also as they entered the Earth's atmosphere, but at least the 
Australian tektites with few exceptions could not have been either tumbling 
or oscillating with large amplitude during the period of greatest heating or 
the patterns characteristic of ablation on bodies with fixed orientation 
would not be present on the many existing specimens. Therefore, their tum-^ 
bling motion had to have been arrested and their subsequent oscillatory motion 
reduced to quite small amplitudes before their period of greatest heating, and 
it is the consequences of this requirement that can be studied by means of the 
present analysis. 

Figures of equilibrium.- In order to apply the results of the preceding 
sections, a value of initial angular velocity must be assigned to the body. 
Further, the body shape should be chosen to be compatible with the assigned 
value of angular velocity, for, as mentioned above, the body in its molten 
state will tend to assume a figure consistent with its turning rate. Let it 
be assumed first that the viscosity of the body in its molten state is suffi- 
ciently low to permit the stable figure to be attained before the body solid- 
ifies.4 The form attained may then be calculated.  In effect, the problem is 
analogous to the famous problem in cosmogony of determining the figure of 
equilibrium of a rotating liquid mass (cf., e.g., ref. 12) except that the 
force tending to contract the mass is surface tension rather than gravitation 
(it is easy to show that for bodies the size of tektites the mutual attraction 

4It is probable that this was the case only for the tektites found in the 
part of the strewnfield covering southeast Australia (cf. ref. 11). The suc- 
ceeding analysis is therefore limited to that particular group of tektites. 
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of the bodies' particles is negligible compared with the surface tension 
force). The definitive analysis is due to Charrueau (ref. 13)> but its essen- 
tials are repeated more accessibly in volume k  of Appell's treatise on rational 
mechanics (ref. Ik). For present purposes, it suffices to note the following 
results: 

(l) In the absence of gravitation, the figure of equilibrium must have 
cylindrical symmetry; that is, cross sections normal to the axis of rotation 
are circles. 

(2) The meridian curve for the figure of equilibrium is an elliptic 
function dependent on a single parameter K2 having the form 

K2 = Soj2a3/8f 0*7) 

Meridian curve 

Sketch (e) 

where 

5 liquid density 

to angular velocity 

f surface tension 

a radius of figure in equatorial 
plane (see sketch (e)) 

(3)  For K2 = 0, that is, for 
zero turning rate, the figure of equi- 
librium is a sphere. Let its mass be 
m and its radius R. A body of the 
same mass with a small turning rate 
will flatten at its poles. For K2«l, 
it is essentially an ellipsoid of 
revolution. The meridian curve z(r) 
(see sketch (e)) is approximately 

z * (l - K2) <7a2 - r2 ;   K2 « 1 

m 
where, for the same mass m,  a and b, the semiaxes of the ellipse, are 
related to R by 

a ~ R 1 + 

b z  R 

K2 /RX3 

3 \a 

1 _ | K2 f| 

(h9) 
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and the mass and the moment of inertia about the axis are, respectively, 

m * ^ (1  - K2)a3S 

(50) 

T7   » -p mac 

(k)    For increasing values of K2 the figure flattens progressively. 
In the absence of an external pressure, however (i.e., no atmosphere), the 
figure must remain convex and this requires K2 <. 1. The value K2 = 1 
therefore constitutes an upper bound on turning rate for which the body will 
seek cylindrical symmetry while in space. At this condition, for the same 
mass m, a/R = 2l/3, b/R = 0.5^3- The exact forms of the figures of equilib- 
rium over the whole range of K2 from 0 to 1 are shown on figure 9- 

.8 

Z/R 

 _4 

 ^6 

.8 

1.0 

IK 
V. 

Iff 
.2 1.0 1.2 1.4 

r/R 

Figure 9.- Meridian curves of figures of equilibrium for a rotating liquid having the fixed mass 
of a sphere of radius R under the action of surface tension. 
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(5)  In the absence of an external pressure, there are no figures of 
equilibrium for K2 > 1.  Presumably in this case the body will decelerate 
through a progression of elongating pear-shaped figures culminating in 
separation at the weakest section. 

In application to tektites, it remains to assign representative numeri- 
cal values to the physical properties appearing in the parameter K2. These 
may be obtained from results given in reference k.    The density 5 of tek- 
tite glass is given as 2.k  gm/cm3. The surface tension f for glass of tek- 
tite composition is reported as 360 dynes/cm. A single representative mass 
will be assumed and will be taken to be that for a sphere of 1-cm radius. 
With these numbers, the limiting values of w and angular momentum for which 
cylindrical symmetry is sought (K2 = l) are, respectively, the order of 
25 radians/sec and 167 dyne-cm-sec. 

Probability of a tumbling entry.- It has been assumed that the body 
attains a figure of equilibrium in space before it solidifies. As a conse- 
quence, it must rotate at a constant angular velocity about an axis through 
its center of gravity, and that axis must maintain a fixed attitude with 
respect to space-fixed coordinates (ref. Ik).  Hence, the angular velocity 
vector also maintains a fixed inclination with respect to the velocity vector 
and the body enters the atmosphere in this condition. An inclination of 
exactly 90° corresponds to a tumbling entry as defined here, whereas an incli- 
nation of 0° corresponds to a rolling motion around the velocity vector. Con- 

sider first the consequences of a 
purely tumbling entry for a figure of 
equilibrium, that is, for a body having 
cylindrical symmetry about the axis of 
rotation, the latter being inclined 90° 
to the stream. As shown on sketch (f), 

  the aerodynamic force on the body 
v always remains parallel to the velocity 

vector and passes through the body's 
center of volume.  Barring the exist- 
ence of a significant inhomogeneity or 
asymmetry, the center of gravity is 
coincident with the center of volume 

sketch (f) an^ ^ke aerodynamic restoring moment 

about the center of gravity is identi- 
cally zero.  Hence, the body in this mode is in a state of unstable equilib- 
rium; a disturbing force whose moment vector is even slightly misalined with 
the angular velocity vector will cause the body to depart from this mode and 
seek a new state of motion in which it is stable. Now consider a case in 
which the axis of rotation is inclined to the velocity vector at an angle less 
than 90°.  Sketch (g) shows a view of the body in the plane containing both 
the axis of rotation and the velocity vector. As the body has cylindrical 
symmetry about the axis of rotation, its projection in this plane is invariant 
with time; the profile is approximately elliptical as a result of the flatten- 
ing the body has undergone while turning in the liquid state. The aerodynamic 
force on the body lies wholly and continually in the plane; it is approxi- 
mately alined with the stream, but passes through a point representative of 
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Sketch (g) 

the center of curvature of the forward 
surface, a point which lies behind the 
center of gravity.  It is clear that 
in this case an aerodynamic restoring 
moment is developed about the center of 
gravity that will drive the angle of 
attack a    toward zero. These consid- 
erations make it evident that the prob- 
ability that a figure of equilibrium 
will undergo a tumbling entry is very 
remote. The stable state is with the 
cylindrical surface broadside to the 
stream, and for all initial inclinations 
other than exactly 90°, the body will 
tend to this state. 

Nonplanar motions.- With tumbling 
effectively eliminated as the normal 
mode of entry for bodies which are fig- 
ures of equilibrium, consideration must 

. be given to nonplanar motions in which 
the angular velocity vector is initially fixed in space, inclined to the 
velocity vector at some angle less than 90°.  It is possible, however, to 
relate this study in a simple fashion to results already obtained here. 

In reference 15, Leon treated 
the problem of a spinning body entering 
the atmosphere, but under the restriction 
that the initial inclination of the 
angular velocity vector from the velocity 
vector be small. As initial inclinations 
up to 90° are of interest here, the 
results of reference 15 are of only 
limited applicability in the present con- 
text. A means of removing this limita- 
tion has been found; however, as it is 
suggested by the form of the results pre- 
sented in reference 15, these will be 
reviewed briefly before their extension 
is presented. A sketch of the relevant 
coordinates, adopted from reference 15, 
is shown in sketch (h). The most impor- 
tant angle is a, the inclination of the 
body axis z about which the body 
rotates, to the velocity vector along 
Z. As the body has cylindrical symmetry 
about the z axis, the aerodynamic force 
on the body is a function only of a    and 
lies in the a    plane. The aerodynamic 
moment about the center of gravity there- 
fore lies on an axis normal to the a 
plane, or along the line of nodes. The 

Line of 
nodes 

Z Flight path direction 

z Body axis of rotation 

a- Resultant angle of attack 

Sketch  (h) 
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(tfJenvj 
a planar 

a- 

angle a    in effect defines the move- 
ment of the nose of the body about the 
velocity vector.  In space and on entry 
into the atmosphere .a    is fixed in . 
value and orientation, but as the aero- 
dynamic moment grows, the a    plane 
will begin to rotate about Z causing 
the body nose to move in a diminishing 
spiral. A typical a    history is 
shown on sketch (i) both as it appears 
to an observer on the Z . axis and as 
a function of time. A very useful 
relation is found in reference 15,. 
namely, the ratio between the asymp- 
totic behavior of .the envelope of a, 

(cf. sketch (i)) to the asymptotic behavior of the envelope of a for 
, nonspinning, nontumbling entry. For the same entry conditions 

i, 0i = oti =0), the ratio is simply 

Sketch (i) 

(g)env 

TV, 
where 

■KV /2 
env  v tanh (jtv/2) 

(51) 

v = 
U) ^-z 

Thus, it is indicated that the ratio of the envelopes is a constant and is 
increased by a factor dependent only on a single parameter v. 

The simple form of equation (51) suggested the possibility that a similar 
form would result even with the removal of the limitation to small values of 
Oj_.    This has been found to be the case.  When the aerodynamic restoring- 
moment coefficient can be expressed as Cm   sin a,  the extension Of equa- 

tion (51) to the case of arbitrarily large values of a±    is of the form 

(tan a/2) env 
(tan cc/2)env 

rtv/2        G(qj,v) 

tanh itv/2 G(°'i^0) 
V cos' a±/2 

(52) 

In the present study, only small to moderate values of v need be considered, 
and in this case the ratio involving G is essentially unity. Then, as 
before, the ratio of the envelopes is increased by a simple factor dependent 
only on v. As the planar solution is already available (eq. (30)), equa- 
tion (52) provides a simple means of studying the angle-of-attack behavior of 
rotating bodies having cylindrical symmetry about the axis of rotation.  In 
effect, one need only study the simplest of planar problems, nontumbling  , 
entry from without the atmosphere; multiplying the result by the factor in 
equation (52) then gives the desired property of the rotating body. 
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In this light, consider the 
nontumbling planar entry of the figure 
of equilibrium with its cylindrical sur- 
face facing the stream. On sketch (j), 
a figure of equilibrium is shown super- 
imposed on a sphere of the same mass so 
that their front faces are alined as 
nearly as possible.  If the front face 
of the figure of equilibrium could be 
alined perfectly with that of the sphere, 
it is clear that the moment about the 
center of gravity of the figure of equi- 
librium would be of the form 

-'TO. -CD 
R - b 

sin a (53) 
Sketch (j) 

It is indicated, therefore, that for 
small amounts of oblateness equation (53) 
should adequately represent the pitching moment for the figure of equilibrium. 
On the other hand, because of the fore-and-aft symmetry of the figure, the 
pitching moment must be zero at a = it/2,   so that equation (53) will not 
apply for values of a in the immediate vicinity of jt/2. With this range 
excluded, equation (53) is applicable to the figure of equilibrium having 
small oblateness.  Hence, with Cm of the required form, equation (30) is 
applicable and is rewritten here for convenience 

(tan e) env 
tan e. P 

= ÜGM C*) 

where e = -a/2.  It is convenient to rewrite equation (3k)   in terms of the, 
ratio q/q-mh? where q^ is the dynamic pressure at maximum heating. We have 
from equation (32) 

x2 = K2 JL = K/jL) ^ (55) 

From equations (35) and (IkL) 

so that yf 

<** - \ •""'V»SI" r± (4) 

becomes, when equations (10), (53),■ (55), and.(56) are used, 

x2 _ 2 _l/3 __1  (R _ b) E f_3\ 
x - 3 6    ß sin 7±  { '   IVW 

(56) 

(57) 

As only small amounts of oblateness are admissible, the figure of equilibrium 
is essentially an ellipsoid of revolution for which the expressions for m and 
b previously presented (eqs. (kj)  through (50)) may be used. Retaining terms 

31 



only to the first order in K  gives 

(R _ b) S „!*- .   ye«! (58) 

•which relates the geometric properties of the body to the rotation parameter 
K2. The envelope expression (eq. (5^-)) becomes 

(tan £)env   [T..     s   1       (59) —   _ . _ (jig I   
tan e     N/ *   P; l/4     l/4 

6.0  __1/3    K
2  ^   ^ 

ßR sin 7^ Lmh 

Finally, the envelope expression for the initially inclined rotating body, 
(tan cr/2)env, is obtained simply from the product of equation (59) and the 
factor given in equation (52). The result is 

(tan a/2)env /   .    7 G(ep) 
tan e-n               / T, .     ,   itv   _ 1/4 1/4 P / K tanh  -^ e_i/a _, ^        ^ 

(60) 

9      ßR sin y±J        UJ 

Equation (60) reveals an interesting result.  It will be noted that both K 
(eq. (kj))  and v (eq. (51)) are linear functions of w. As tanh(rtv/2) is 
essentially unity for all values of v    greater than about 1.5, equation (60) 
indicates that the effects on the envelope due separately to K2 and v cancel 
each other. On the one hand, increasing K2 corresponds to increasing the 
turning rate of the liquid body, giving it a greater oblateness, and this in 
turn leads to a larger restoring moment which makes the envelope subside more 
rapidly. On the other hand, the inertial effect of the larger turning rate is 
to widen the envelope. These two opposing effects cancel. The result is 
that, regardless of the turning rate, all bodies formed by turning, having the 
same mass and the same initial inclination cfj_, will have identical angle-of- 
attack envelopes. Although this result has been obtained under the restric- 
tion of small turning rates, numerical solutions for larger rates indicate 
that it remains essentially true for all rates up to the limiting value 
(K2 = 1) for which a figure of equilibrium exists. 

Consider the application of this result to the southeast Australian 
tektites. Of all the round-form tektites that have been discovered in this 
region, none have been reported, to the authors' knowledge, to have any more 
than a small amount of oblateness; that is, in reference to figure 9,  none 
apparently have primary figures corresponding to values of K2 greater than 
perhaps 0.2. This means that if they had been formed by turning in the liquid 
state, their turning rates had to have been small. The analysis above leads 
one to expect that, as the tektites having small turning rates evidently were 
able to survive their passage through the atmosphere, tektites having forms 
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consistent with considerably larger rates should have been able to survive as 
well since their angle-of-attack envelopes should have been essentially the 
same. That such tektites apparently have not been found in southeast 
Australia therefore cannot be attributed to their having failed to survive 
their flight through the atmosphere, but must be charged to the mechanism by 
which the tektites were formed. The evidence is, then, that this mechanism 
was capable of imparting to the tektites only a very limited amount of 
angular momentum. 

Effect of ablation.- The analysis of the preceding section should ade- 
quately describe the behavior of the round-form tektites over the initial por- 
tion of their entry into the atmosphere. As soon as ablation begins, however, 
the bodies undergo a marked change in geometry, and this must be taken into 
account in the analysis of their subsequent behavior. This may be done quali- 
tatively within the framework of the present theory in view of the following: 
First, as in the preceding section, one need only study the case of planar 
motion and then multiply the result by the factor given in equation (52) to 
obtain the behavior of the rotating body. Second, in consideration of the 
planar motion, it may be said that the previous analysis will hold over the 
range of dynamic pressure from essentially zero to a value q^    at which abla- 
tion begins. Results of the ablation studies of reference h  indicate that the 
ratio %,/q.xnh    varies somewhat with entry conditions and tektite size. For 
entry conditions compatible with a lunar origin and for tektites the size of 
those found in southeast Australia, results from reference k  indicate a value 
for the ratio of approximately l/20. For convenience, let it be assumed that 
a peak in the oscillatory motion occurs in the vicinity of this point.. The 
corresponding values of ep and x(ep) then may be determined from the preced- 
ing analysis and will serve as the initial conditions for the ensuing motion. 

As ablation begins, the surface 
facing the stream will begin to recede, 
increasing its radius of curvature (cf. 
fig. 19, ref. k).    It is reasonable to 
assume that, though the angle of attack 
continually changes, the forward surface 
will continue to present an essentially 
spheroidal face to the stream. Hence, 
approximately, the aerodynamic force on 
the body will remain alined with the 
stream direction and pass through the 
center of curvature of the forward sur- 
face. This is illustrated on sketch (k). 
As the forward surface continues to 
recede, its center of curvature moves 
rearward. The center of gravity also 
moves rearward, but less rapidly than the 
center of curvature, so that the static 
margin | increases with time. The 
result is that the aerodynamic-restoring 
moment about the center of gravity retains 
the form 

D-* 

Sketch (k) 

^m _ -CD! sin a (61) 
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but now CD and especially | are increasing functions of time, 
tion of motion, equation (k),  also retains the same form 

The eq.ua- 

ä - Y CD|q(t) sin a= 0 (62) 

where now I also is a function of time. However, for the spheroidal body 
the changes in I and CD are small enough to be neglected, or, in any case, I 
and CD may be combined with | to give an "effective" value of that param- 
eter. Finally, since both £ and q(t) increase with time, it may be assumed 
that, at least qualitatively, £ increases as some power of q, that is, 

q. 
A 

(63) 

where £a and qa are, respectively, the static margin and dynamic pressure at 
the beginning of ablation. On insertion of the exponential approximation for 
q (eq. (8)), the equation of motion becomes 

AZ n  ,  s(i+A)t a - qa T CD^ae sin a = 0 (610 

which retains the form for the Painleve transcendent. In effect, the increas- 
ing static margin causes the body to behave as though it were a nonablating 
body passing through an atmosphere with a larger density gradient than that 
actually existing. 

With the form of the Painleve equation retained, all of the results 
obtained previously for the planar oscillatory motion may be made applicable 
merely by a change in notation. Thus, let 

= s(l + A) 

*■&    1 -qR — CD! a (65) 

x = Ke 
st/2 

The asymptotic behavior  of the envelope curve follows  from equation' (28) 

(tan e) env 
tan e P 

C(K)G(ep,K) 

N/~X 

(66) 

It is useful to cast this result in terms of the dynamic pressure ratio q/qmh 
where, as before, q^ is the dynamic pressure at maximum heating. The result 
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(tan e) env 
tan e-r 

C(K)G(€P,K) 

(67) 

"•a q.mh. 

The parameter K    may be related to the original coordinate x at the begin- 
ning of ablation through the expression 

x (<*) V 
1 + A 

(68) 

Finally, the complete envelope curve for the planar motion, obtained from 
equations (59) and (67) is multiplied by the factor J (TC v/2)/ [tanh(jtv/2)] to 
give the desired result (tan cr/2)env. Results obtained from the above analy- 
sis are shown on figure 10 for several values of the ablation parameter A. 
The body has the mass of a sphere of 
1-cm radius and a turning rate of 
1 radian/sec.  Entry conditions are 
those estimated in reference k  to be 
compatible with a lunar origin: 

Vi = 11.2 km/sec 

30 

20 

-1 
ß = O.I396 km 

7±  =  20u 

The main results are considered to be 
those shown on figure 10(a) for an 
initial inclination a±    of k0°  since 
if the initial inclination was truly 
arbitrary, the greatest number of tek- 
tites should have entered the atmos- 
phere with inclinations near the mean 
between 0° and 90°.  Figure 19 of refer 
ence h  was used to establish a represent- t 
ative value of A for tektites undergoing 
ablation under nonosdilatory conditions: 
Over the important initial period of. 
ablation, during which time the radius of 
curvature of the front face increases 
very rapidly, A was found to be of the 
order of k  or 5- For the initially 
inclined rotating tektite, of course a 
smaller value must be expected, but it is 
seen on figure 10(a) that' even a fraction 
of the full amount is sufficient to reduce 
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(b)  a± = 80° 
Figure 10.- Envelopes  of resultant angles  of 

attack of a rotating spheroidal tektite 
for a range of values of the ablation   , 
parameter    A;  turning rate 
to = 1 radian/sec. 
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a    to negligible proportions well before maximum heating.  The results lead 
to the conclusion that entry conditions compatible with a lunar origin permit 
sufficient time for the greater part of the round-form Australian tektites to 
aline themselves with the stream well before maximum heating, in compliance 
with the physical evidence of their having undergone ablation under nonoscil- 
latory conditions over the high heating portion of their trajectories. Shown 
on figure 10(b) are results for an initial inclination of 80°.  It is noted 
that, if the same rate of ablation is allowed (A = 3) as that which brought 
the body to negligible amplitudes in the case of a ^+0° initial inclination, 
here the body still retains a residual amplitude as maximum heating is 
approached, but of no more than a few degrees. Then in this case also, the 
final stage of ablation occurs with the body in an essentially fixed attitude 
with respect to the stream, so that the ring waves and coiled flanges charac- 
teristic of this stage should make their appearance on this body as well. On 
the other hand, since over the initial portion of the ablative process the 
inclination of the nose of the body was considerably greater than in the first 
case, the nose will have received considerably less heating than in the first 
case, and hence will have receded a lesser amount. The initial inclination 
must be considered to be arbitrary and therefore, for initially identical 
bodies, any amount of ablation is possible between the maximum, when the ini- 
tial inclination is zero, and that for initial inclinations near 90°.  It is 
believed that this explains how it can happen that initially identical tek- 
tites following identical trajectories may nevertheless show quite different 
depths of recession of their forward surface (cf. ref. k)• 

Nonspheroidal shapes.- While the preceding analysis would appear to apply 
to the majority of the tektites found in southeast Australia (i.e., those of 
this region whose shapes are essentially spheroidal), it does not account for 
the remaining shapes, in particular the ellipsoids and "dumbbells." Figure 11 
illustrates the three shapes, the original unablated forms being evident in the 
rear view.  It is interesting to speculate on possible mechanisms that might 
account for the latter two forms. The fact that oblate spheroids, ellipsoids, 
and dumbbells make their appearance also in the study of rotating liquids 
when the contractive force is gravitation (ref. 12) suggests at first glance 
that the mechanism for the formation of tektites might have been of a similar 
nature. The investigation of this possibility was in fact what motivated the 
present research.  In the gravitational case, the spheroids and ellipsoids 
form a progression of figures of equilibrium with increasing angular momentum, 
while the dumbbell or pear-shaped figure makes its appearance for values of 
angular momentum beyond that of the last stable ellipsoid (whether the pear- 
shaped figure is itself stable is a delicate and still controversial question). 
Unfortunately, the case for the existence of a parallel phenomenon for the 
tektites is untenable. When the contractive force is surface tension the 
figure of equilibrium must have cylindrical symmetry about the axis of rota- 
tion (ref. 1^), which rules out both the ellipsoid and the dumbbell. 

Two alternative phenomena may be envisaged: First, these bodies may have 
had angular momenta large enough to exceed the limiting value for which a 
stable figure exists. They would then have sought to rid themselves of part 
of their angular momentum, and this process could conceivably have led to the 
formation of elongated ellipsoids and dumbbells, these solidifying before they 
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Front  view 

Side view 

ÄJ* 

Rear view 

Figure 11.- Australian tektites having initially spheroidal, ellipsoidal, and dumbbell shapes. 
(Photograph of casts made from originals in British Museum.) 
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could break apart.  Let us confine attention only to specimens of a common 
initial mass, and let the mass be that of a sphere of 1-cm radius, a charac- 
teristic shared by a large number of the specimens found in southeast 
Australia. Then according to the above hypothesis, the elongates must have 
had angular momenta in excess of approximately 170 dyne-cm-sec. On the other 
hand, spheroids of the same mass found in southeast Australia could have had 
angular momenta only of the order of 0-60 dyne-cm-sec on the presumption 
already noted that their values of K2 were no larger than perhaps 0.2. Then 
there is a range of angular momenta from 60 to 170 dyne-cm-sec in which fig- 
ures of equilibrium consistent with values in this range apparently have not 
been found in southeast Australia. As has been discussed, the dynamic behav- 
ior of these bodies should have been similar to that of surviving bodies hav- 
ing smaller values of angular momentum, and hence, there is no evident reason 
why they should have failed to appear. That is, if the elongates had been 
formed as the result of having an excess of angular momentum, then flattened 
spheroids should have been formed as well and should have been found in south- 
east Australia. This inconsistency leads one to doubt that the elongates 
could have had such large values of angular momentum and therefore to reject 
the idea that they could have been formed in the way envisaged above. 

With rotation rejected as the mechanism by which the elongates acquired 
their form, a second alternative is the break-up of a slowly turning jet of 

liquid glass. As is well known 

■O (ref. l6), a jet of fluid is unstable 
and will exhibit ever-increasing har- 
monic undulations along its length. As 

f~^_^.—«. shown in the upper section of 
v )   sketch (z), a freed drop would tend to 

exhibit an ellipsoidal form, whereas, 
sketch (1) as .j_n .^g ]_ower section of the sketch, 

the drop would tend to the dumbbell 
form. Surface tension would then cause all forms to tend to the spheroidal. 
The appearance of all three forms on the surface of the Earth may be attrib- 
uted to varying rates of solidification, some bodies having solidified before 
attaining their final forms. 

CONCLUDING REMARKS 

The tumbling motion of aerodynamically stable bodies entering planetary 
atmospheres has been analyzed considering that the tumbling motion, its arrest, 
and the subsequent oscillatory motion are governed by the differential equation 
for the fifth Painleve transcendent. A study of the asymptotic behavior of the 
transcendent enabled the functional relationship between the envelope of oscil- 
latory motion and all the significant body and planetary properties to be demon- 
strated in a concise expression.  Results were applied to the study of vehicles 
intended for use as planetary probes and it was shown how rapid estimates could 
be made of their probable amplitudes of oscillation in relation to aerodynamic 
heating and loads. The theory was also applied to a study of the motions of the 
southeast Australian tektites.  It was concluded that with entry conditions 
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compatible with those for a lunar origin, a considerable range of initial 
turning rates and initial inclinations is admissible for the spheroidal tek- 
tites within which their amplitudes of oscillatory motions are reduced to^ 
negligible proportions before maximum heating. This complies with the evi- 
dence of their having undergone ablation at essentially fixed attitudes over 
the high heating portion of their trajectories. The admission of an initial 
inclination from the direction of flight of the axis about which the body 
turns leads to an explanation of how it can happen that initially identical 
tektites following identical trajectories may show significantly different 
depths of ablative recession of their forward surfaces.  It is suggested that 
the mechanism by which the southeast Australian tektites acquired their forms 
was the break-up of a slowly turning jet of liquid glass. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field, Calif., March h,  196k 
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